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ABSTRACT

A model for ELF atmospheric noise is proposed and studied in detail. The
model Is completely described by a few meaningful parametere which are
easily correlated with measfired data. Procedures for fitting the free param-
eters to observed noise data are provided. The model should prove useful in
the analysis and design of communication systems operating in Impulsive

noise environments.
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A MODEL FOR ELF NOISE

I. INTRODUCTION

The primary source of electromagnetic noise at ELF (3 to 300 Hz) Lan be attributed to
lightning discharges which propagate in the earth-ionosphere cavity. As a result, the received

noise at a typical ELF receiving site tends to be impulsive in character even in the absence of

strong local thunderstorm activity. Furthermore, ELF noise has been observed to exhibit

strong geographical, seasonal, and diurnal dependence so that the observed noise background

can be expected to be non-stationary as well as highly non-Gaussian. To assess the perform-

ance of communication systems operating in such environments, it is important to have available

a mathematical model that provides a complete statistical description of the received noise. It

might be added that this requirement exists whether the problem is that of obtaining results on

systean performance analytically or by computer simulation. To be useful, any such model must

satisfy the following diserata:

(a) It must agree reasonably well with the underlying physics.

(b) It must be completely describable by a few meaningful parameters.

(c) Its statistical characterization must be easily correlated with corre-
sponding measured data.

(d) Hopefully it is mathematically tractable.

The present report is one of a series concerned with the development and application of such

a model to ELF communications. In this report we will be concerned with the development of this

model and the fitting of its parameters to observed ELF noise. Other reports in this series will
be concerned with optimum/suboptimum receiver structures and their digital realizations.

Before entering upon a detailed discussion of this model, let us briefly review some of the

pertinent characteristics of ELF noise.

II. CHARACTERISTICS OF ELF NOISE

General observations of wideband ELF noise reveal frequent occurrences of large pulses

superimposed upon a more homogeneous appearing background noise. Typical recorded* H-field

noise waveforms are illustrated in Figs. I through 3. We have found it convenient to classify the

recorded noise into the three categories: high, moderate, and low-level, depending upon the

observed spectral levels. An exception is the case of Norway data which appear to be of a uni-
form level. The large pulses present in the waveforms of Figs. t through 3 are undoubtedly due

to strong local thunderstorm activity while the background structure, on the other hand, is due

io a considerably greater number of unresolved low-level pulses attributed to more remote
thunderstorm activity. As a result, it follows from central limit theorem considerations that

the large number of low-level overlapping pulses resemble Gaussian noise. Considerable de-
partures from this condition are to be expected at larger amplitudes. Indeed, measurements

of the amplitude probability distribution (APD) of ELF noise confirm this. Figures 4 through 6

illustrate the computed APD's corresponding to the noise waveforms appearing in Figs. i
through 3. Here we are plotting the probability or percent of time that the absolute value of the
recorded noise exceeds a given level measured in rms units. The scales have been chosen so

that the APD of Gaussian noise plots as a straight line of slope -1 as illustrated in Fig. 7. From

"Th, details of the measurement and recording system eor described In Ref. I.

II



4173 -T
_____

4,,J _--..1* J

SZI
0 25

MILLISECONDS

Fig. 1. Typical high-level H-field ELF noise waveform recorded at Saipan.
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Fig. 2. Typical moderate-level H-field ELF noise waveform recorded at Malta.
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Fig. 3. Typical H-f4ield ELF noise waveform recorded at Norway.

Figs. 4 through 6 it is to be observed that at low amplitudes the APD does indeed resemble that
of Gaussian noise while exhibiting a much larger dynamic range at larger amplitude levels.

Also of interest are various first-order temporal statistics of ELF noise. We will be par-
ticularly interested in such quantities as the average number of high-level pulses per second and
the distribution of the interval between their occurrences. Unfortunately, such quantities are
difficult to obtain from the recorded data in any unambiguous fashion. Some techniques for the
analysis and measurement of the temporal statistics of ELF noise are described in detail in
Ref. 1. Her6 a useful criterion for the presence of a pulse in wideband ELF" noise was presented
in terms of three parameters TV, Tu. and S c, as illustrated in Fig. 8. The "beginning" of a
pulse is said to have occurred wheki the absolute value of the noise waveform first exceeds a
threshold T u, while the "duration" of such a pulse is measured from this instant until such time
as the absolute value has been below TL for at least S c seconds. It is clear that any practical
us# of measzrements based upon this criterion will require careful choice of the parameters
T L, Tu, and S c . Oviously, both TL and Tu should be placed just above the background noise
level if such a point can be accurately defined. Ofen this can be accomplished by observation
of the APD plot. The knee of the APD plot, which represents the point of departure fronm
Gaussian behavior, is in most cases quite pronounced (Figs. 4 through 6). Suitable thresholds
taken about this point should provide useful information on the Lemporal statistics of the high-
level pulses while excluding the low-level background noise from consideration. For definiteness
we have developed the following useful procedure for placement of the threahold levels. First,
draw tangents to the two distinct portions of the APD curve as illustrated by the dashed lines In
Fig. 9. Let T represent the level in rms units, corresponding to the intersection of these two
lines (T = - 6 db for the high-level Saipan data illustrated in Fig. 9) and set Tu = T L=T. The
choice of S c.on the other hand, is not quite so straightforward. Obviously, we would like to
make S c as small as possible without causing portions of a single noise burst to be mistaken
for two or more resolved pulses. From experimentation. with the noise thresholds set at the
value T described above, we have found values of S0 cin the range 5 to 10 maec sufficient.
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TABLE I

TYPICAL FIRST-ORDER TEMPORAL STATISTICS OF ELF NOISE

Average Number of Pulses/Second Average Pulse Duration*

Noise Data Sc =5msec Sc =10msec S =Smsec Sc = i0msec

Saipan
High- Level t2.8 t0.4 4.0 7.0

Moderate- Level 10.2 8.2 5.0 8.0

Low- Level 8.0 7.6 6.0 8.0

Malta
High- Levelt

Moderate- Level 11.3 10.8 4.0 5.0

Low- Levelt

Norway 9.3 8.5 3.0 4.0

* Duration is the actual width of the pulse obtained by subtracting the interval Sc from
the definition of duration in Ref. 1.

t No data available.

Table I illustrates some typical results using the above criteria which will be of use to us later.

It is of some interest that these results compare favorably with visual observations.

It should be noted at this time that it la nowhere suggested that the simple first-order am-
plitude and temporal statistics that we have been nonsidering completely describe ELF noise.
Nevertheless, they are useful in that any proposes model must at least result in statistics which

compare favorably with these easily measured quantities.

MI. PROPO6ED MODEL

An intuitively satisfying model for impulsive noise processes typical of the ELF environment

consists of the sum of a low-density* shot process2 ' 3 and Gaussian noise. The shot process ac-
counts for the randomly occurring high-level pulses while the additive Gaussian noise represents

the low-level background noise. A convenient representation for the shot process is that of a
random impulse train exciting a finite-state linear (usually time invariant) system as first pro-

posed by Synder.4 Thus, we will assume that the noise processes of interest can be described

by the state equation

AMt - .4 (t) + bu(t) ; 44t) =.N;o (1a)

and the output relation

y(t) = <9, _4(0 (1b)

where A is a constant n x n matrix, Lb and c are n-vectors (specifically column vectors) and
<.,.> denotes an inner product. The state vector x(t) is itself an n-vector while the input is a

scalar of the form
N(t)

u(t) z • ut6(t-ti) , (2)
i-.4

By "low-density" we mean that the average Inter-arrival time between exciting impulm Is Vreatr then iny
system time constants.
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i.e., a point process. Here {N(t). t • 0) is a counting process 5 with arrival times t., t 2 ... and

fui) is a sequence of independent and identically distiibuted (I. i.d.) random variables with common

univariate probability density function (p.d..) f(. ). Finally, the observed noise is given by

n(t) = y(t) + w(t) . (3)

where w(t) is a white* zero-mean Gaussian noise process with double-sided noise spectral
density as = N o/2 watts/Hz and assumed independent of the driving point process u(t).

While there are many possible state-space realizations of the system described by Eq. (1)

leading to the same input-output behavior,6 the particular realization that we have adopted

(mainly to agree with Ref. 7) is such that

a 1 0 . . . 0

-a 2  0 1 0

(4)

0 .0

0 0 . 0

while bT =(bl, b 2 , . .. bn) and finally qT (c, 0. ,...., 0). The resulting system transfer func-

tion of the linear dynamical system generating the shot process is easily seen to be given by a

proper rational function simply related to the coefficients of a and b. Le.,

me a = <c. ( Is - A] 'tb >

n n-n

+as a ... an

where I is the n X n identity matrix and U(s) and Y(s) are Laplace Transforms in the complex

variable s of the input u(t) and output y(t) of the linear dynamical system. The resulting state-

space realization is illustrated in Fig. 10. An alternative realization based upon the system

transfer function [Eq. (5)) which will prove useful in later digital implementations can be obtained

by observing8 that the matrix fal - A&]" in Eq. (5) has the spectral representationt

- . Z- # (6)

where the nk, k = t, 2.... n are eigenvalues of A (poles of the system transfer function) and

The onalysis Is *ally extended to colored prosms.

t WO hav mu,,ed that Phe polof the sytem 1.0 r function " distinWt.

9
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Fig. 10. Two realizations of linear dynamic system. (a) State-stpace realization;
(b) input/output realization.

Ekt a d , 2,. .. n (7)
Ck

with Ck any closed contour in the complex plane enclosing only the pole at sk' Substituting this

result into Eq. (5), we obtain

where

Ak 1 <G. [s-f>do

M Hs) ds (9)
Ck

is simply the residue of H(s) at the pole sk. Thus, Eq. (8) is merely a partial fraction expansior

of the system transfer function.
We will be interested, among other things. in the amplitude probability distribution (APD)

of the process n(t) described by Eq. (3). To this end consider the characteristic function (ohLf.)
of n(t) given by

ti(V 0h E {0 ivn(t))

aE (e iv <R, (0) a {*ivw(t)) (to)

9



where we have made use of the assumed independence between the u(t) and w(t) processes.

Letting

0g(v) !a E {eivw(t)) (I

and

y (v; t)a E {etvCc -1x(t) (12)

we have

Onlv; t) = 0glVM 0yl(v; t) (t 3)

Note that 4g(v) is merely the univariate ch.f. of a stationary zero-mean Gaussian process so that
g

-y 0v , (14)
*g(V) = e

where a 2 has been described previously and is independent of t. To evaluate v,(V, t), note that

the solution to (Ia) is given by6

txE(t) = 1(t, to) x(to) +• ±(t, T') h~u(7') d7 15 [-

0

where *(t, 7) = exp { A(t - r)) is the state transition function. From Eq. (2) this last expression

can be written as

N(t)

x(t) =t, t 0 ) x(to) + Z 1(t, tk) buk (t6)

k=N(to )+

so that finally

*g(v;t) = E {exp[iv(<st(t,to) X(to)>J) E fexp iv k N-, 11(t, tk) b>uk (17)
kfN(to)+l

Let us give consideration to the evaluation of the second of these expectations. This quantity is

easily seen to be the ch.f. of a random suan of independent although not necessarily identically

distributed random variables. If the counting process (N(t), t >,,o) is assumed Poisson* with
intensity A, it can easily be shown5 that

N(t) ,.t

E * je [iv bu' expl A Y fip(v; r) - 11 dr (18)

k=N(to0 )4 )+ S 1to

where

V(V; 7) - E {exp~iv<S_, .(t, 7") _>u ) (19)

It Is of some Intermt to extend thin mulls to the cae of an cobltray renewal counting preem.

to



is the ch.f. of the random term appearing in the summation of (14). Here the expectation is
with respect to the only random quantity u so that

('(v; .) = Ou((v cO(t, 7) b>) (20)

with 4'u(. ) the univariate ch.f. of the random amplitudes {Uk) possessing common p.d.f. f(.).
It will be convenient to let

h(t, 7-) = <Sc, 1(t, T) b> M ;•)

noting that h(t, 0) = h(t - 7) due to the time invariance of f(t, 7-), Indeed, h(t) is easily seen to be
the inverse Laplace Transform of the system transfer function H(s) in Eq. (5) and thus represents
the impulse response of the linear time-invariant system.

Similarly, for the first expectation in (17) we obtain

E {exp [ivEc, 1(t, to) x(to)>)} = E {exp[i v1t (t. to)c, x(to)> ) 0 ) (v..t (t. to) c) (22)

with 4 'x(t )(. ) the multidimensional ch.f. of the initial state vector x_(to), and where 0 (t, to) de-
notes tFheoconjugate transpose of the state-transition matrix. Thus, using the preceding results
in (17), we obtain

(y(Vvt) = X(to)(V. (t, to)S) exp fLY ISO[,u(vh(t, 7)) - i dri (23)

for the ch.f. of the shot component. For a specified distribution of the initial state vector x(t0 )
and the p.d.f. f(. ) of the random amplitude, the ch.f.'s xt)(•)and u(• ) are determined. The
evaluation of 4y (v; t) is then relatively straightforward, aittough possibly tedious, for specified
system dynamics. The quantity y(v; t) has been evaluated for some special cases in a previous
memorandum9

Also of some interest is the joint ch.f. of the shot component at times t,, t 2 with t 2 > t
say. By a derivation similar to the above it is easily shown that this quantity is given by

- y(v; tl t 2 ) 4 x(t_)([v 0 (t, to) +v 2 *' (t2 , to)] c)exp F;S [,'u{vih(t, ,)

t 2

+ v2 h(t 2, 7)) - t1 dTJ exp F s5i [*u(vZh(t2 , 7)) - 1id) , (24)
I

.where v N (v1 , v 2 ). This expression can again be evaluated for specified distributions on Eto)
and u and assigned system dynamics.

It will be convenient in what follows to assume that we will be interested only in times that
are sufficiently far removed from to so that initial transient disturbances have been dissipated.
For all such times t we have approximately I (t, to)_c m 0, the null vector so that the following

approximations are valid

vyl; 0t) exp A so IuVh(V)} - I1 di (25)

- t ii
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and

0 I

X exp ,A f #f(vzh(J)) - I I di (26)

where =t t-. With y(t) 3C x(t)> representing the shot component, it follows that

E {y(t)) = XE fu) h(s) dt (27)

Similarly, we have

var {y(t)) = AE {u 2 ) 50 h2(Q) di (28)

and for the autocorrelation function

R(7) = E {y(t) y(t + 7)) aA E2 fu) h(Q) d4 + AE {u 2 } h(N) h( + r) dt (29)

with corresponding spectral density function
8(wJ) = 2� 2E2 (u) H2Z(0) 6(w) + AE (u 2 ) WJ) 1w) , (30)

where H(jw) is the Fourier Transform of h(t), i.e., the system transfer function H(o) evaluated

at a = jw provided that the imaginary axis is within the region of absolute convergence of MOs).

Table II summarizes the properties of several linear systems which will be of interest to us in

TABLE H
MEAN AND VARIANCE OF SHOT COMPONENT

FOR SOME USEFUL SYSTEM TRANSFER FUNCTIONS

H4s) NOt E (y(t)) Var (Jy(t))

c cexzz tz
C ce-at u.c (t) E a

cl ceat cos Wt u (t) ACE fu) he2w 2E (ua)

(s + a) +(w a +Wk 4a(az + W?)

what followsr. We will for the most part be interested only in the case where Z (u) v O. From

Table 1, then. it is a simple matter to choose the value c for specified system dynamics to

achieve a given value of y defined by

i.e.. -y represents the ratio of the rms value of the shot noise component to that of the additive

12
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background Gaussian noise and will prove to be an important parameter of the proposed model.

In summary, then, the parameters of the proposed model which must be specified are:

(a) The p.d.f. f(. ) of the pulse amplitudes,

(b) The intensity A of the Poisson point process,

(c) The linear system dynamics,

(d) The ratio y of the rms values of the shot and Gaussian components.

Observe that the choice of background noise level 2 is somewhat arbitrary and merely amounts

to a trivial rescaling of the process n(t). As a result, we will assume a 2 = I in what follows.
0

In the following sections we will discuss the choice of the above parameters to match observed

ELF noise.

IV. DIGITAL REALIZATION OF MODEL FOR ELF H-FIELD NOISE

We will be particularly concerned with fitting the model described in the preceding section

to observed H-field data and obtaining a suitable digital realization of this model. The situation

is complicated somewhat by the fact that the available noise data have been recorded with a loop

antenna, thus measuring the time derivative of the ambient H-field. To compensate for this,

the raw data are processed by a filter with an attenuation characteristic exhibiting a 6 dB/octave

roll-off out to 350 Hz. This approximate integration reconstructs a facsimile of the actual

H-field data. We will approximate this filter by a moving average operation performed on the

U 110 I 15-nit) ^A?(1
SLINEAR DYNAMICAL i.) ft. y

-- •; SYSTEM #4 |(I

Fig. 11. Modil of observed H-field data.

n(t) process as illustrated in Fig. iI. The resulting process n(t) is then related to the n(t)

process of the previous section by

fit) =S "- n(r) dr (32)

This operation can be considered as the convolution of the input n(t) with the impulse response

hl~t) f u_,(t) - u_,(t - 6)) (33)

wiere u- (t) is the unit step function. The corresponding squared-magnitude response is

given by

which is down 3 dB at wi w 0 A 2. 78/6. It it reasonable then to adjust the average interval 6 to

result in a "bandwidth" wo W 2w X 350 rad/sec.* We will assume then that

Later studios have indicated that S shold be ma& samedWW lW than this vlue to mrst In po@trl
characteristics which more cloely melon "bserved ELF H-feld naise.

/ $

113



II

• ,2.78(35)

in what follows.

The digital simulation of the input/output behavior of the linear dynamical system is deter-

mined from the following considerations. Observe that the solution to the state equation (Ia) is

given for any t > r by
mt

t t r) x(r) + S (t, ) bu(f ) d , (36)

where C(t, r) = exp (A(t - r)) as has been described previously. Thus, if we are interested

only in the discrete times t = k&, k = 0, 1, 2 .... , where A is the sampling interval, we have

upon letting _xk = x_(kA) the discrete recurrence relation

Xk+ = FXk +b'kkk4 ; O , (37a)

Yk = 0 2--k 1 (37b)

where = exp A), and

0 if no impulse occurred in the interval (k&, (k + 1) A]=k4 t (38)
uk+1 u i if the ith impulse occurred at time ti, kA < ti ,< (k + 1) A

Finally, T k is defined only for nonzero uk values as bk = erp (&[(k + 1) A - ti]} _. Thus, taking

z-transforms in (37), we have for the discrete transfer function

M z) = -( - . [ I- F )-J , (39)

U(z)

where U(z) and Y(z) are the z-transforms of the input and output sequences (k) and(yk)

respectively. We shall assume that the sampling interval A is small relative to any time con-
stants associated with the linear system so that* b m b. Again making use of the spectral

representations we have

n
- -1 - 0k (40)

k=1 I -zi esk

where the a k = t, 2 .... n are again poles of H(s), and the Ak are defined as in Eq. (6) and the

sequel It follows that the discrete transfer function I-(z) can be expressed as

n Ak

H(N) Z - I skA (4t)

hut t-u e

with Ak k = w, 2.... n, again the residues of H(s) at the distinct poles sk, k I =, 2.... n. This

in the essence of the impulse invariance technique of digital filteringt 0 and results in a parallel
realization of the discrete system described by (37). In the present study, we have concentrated

upon the three linear systems described in Table U for which the parallel digital realizations

*At any rote, in the digital simulation the Impulses ounwin at kA < ti; (kc + 1) A will olways be placed at the
right-lhed boundary of such Intervals so ihat this 1imatlon Is exact.

t4
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corresponding to (41) are readily obtained. A FORTRAN orogram for a complete digital simula-

tion of the proposed model has been written and used extensively in this study.

V. CHOICE OF PARAMETER VALUES

The first quantity to be specified for the proposed model is, of course, the p.d.f. f(.)

of the individual pulse amplitudes. In principle, this information could be obtained from the

results of Section III by computing the APD from the derived expressions for the ch.f. for a

specific choice of f(- ) and comparing the results with measured APD's. The difficulty in actually

computing the APD except in special cases, however, precludes this approach. As an alterna-

tive, let us note that the APD at high levels should essentially be determined by the large noise

peaks and hence should resemble f(. ). Let us then choose a p.d.L whose amplitude distribution

at large levels is similar to that observed in measured APD's. We have considered two such

zero-mean distributions which appear to satisfy this requirement: the double-sided power-

Rayleigh distribution defined by

f(u) =- 0l (42)

and the double-sided log-normal distribution defined by*

f(u) ex 1_ (in•' lul 1 , 2 (43)

where IA and a 2 are the mean and variance, respectively, of a Gaussian variate g for which
u = Ag. In particular, we will assume that R = 0 in what follows. The power-Rayleigh distribution

has a variance R 2o i 1 + 2/a), where 1(. ) is the Gamma function while the log-normal distribu-

tion possesses a variance exp {2a2). Thus, the power-Rayleigh distribution is completely defined
by the scale parameter H0 and the exponent a. A plot of the resulting APD for the power-

Raylefgh distribution is illustrated in Fig. 12 for several values of a. By comparison with the

high-level region of the measured APD plots given in Figs. 4 through 6, value.q cf q in the range

0.25Z < a < 0.50 have been found appropriate. Similarly, we have found it useful to characterize

the log-normal distribution by the scale parameter o and the related quantity

V =10 log1  E fu2 )
vd -- E2o { u1) (44)

442= 4. 34 a2

Plots of the resulting APD for several values of Vd are illustrated in Fig. 13. Here It appeare

that values of Vd in the range 10 ,< Vd 4;i5 prove sufficient.

Now let us consider appropriate choices for the intensity I of the point process. This in-

formation can be obtained directly from the data of Table L For definiteness we will take X as

the average number of high-level pulses per second from Table I with Sc - 5 msec as this choice
appears to correlate most favorably with visual observations. Additional information on system

Each of those distributions can be obtained by forming the random variable u - pr, where r hoes conventional
one-sided distribution of tither tye and p is a andom variable taking values *1 with equal probabilllty.
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dynamics can be gleaned from Table I. In particular, each of the linear system transfer func-

tions in Table II possesses an impulse response with a well-defined duration (or time-constant)

Tc = 1/a seconds. It then proves convenient in each case to adjust the parameter a to provide

an average pulse duration as given by the measured data in Table L Again for definiteness we

take the average pulse duration with Sc = 5 msec as this choice correlates most favorably with

visual observations. For system transfer functions with complex poles, it has been determined

that wný 2000 rad/sec should prove sufficient in each case considered. Thus, all that remains is
to develop an appropriate rationale for choice of the quantity v given by (31). This in turn fol-

lows easily from consideration of the effect of the parameter y on a typical APD plot. As we

have previously observed, the APD is controlled mainly by the background Gaussian noise in the

small signal regime. Thus, by observing the amount by which the straight-line segments of

the APD plots in the small-signal regime are depressed belov the APD corresponding to Gaussian

noise alone (Fig. 7), we should be able to obtain a rough estimate of y. In particular, observe

r r/laO
r - r (45)

%/I + .y2

where we have made use of the fact c2 =a 2 (1 +'Y2). Thus, the amount by which the APD should
0be depressed below that for Gaussian noise alone is given by

A~B 10 log,10 (1 + -Y2) (46)

It should be noted that this approximation can be expected to hold only for -Y sufficiently greater

than unity. As an example, comparing Fig. 4 with Fig. 7, it is observed that the low-level

Gaussian segment of the former is depressed by A dB f 13 so that y = 4.4. In cases where the

approximation fails, resort has been made to visual observation of the resulting APD plots for

choice of y.
Table III indicates the appropriate choice of parameter values for each of the models con-

sidered and has been generated by the above procedure. As an example of the type of results to
be obtained, consider the high-level Saipan data. Figures 14 through 19 illustrate typical noise

waveforms obtained from the proposed model with parameter values taken from Table IIL These

waveforms should be compared with that in Fig. 1. Observe that the most favorable visual corre-

spondence is obtained with a linear system possessing a pair of complex conjugate poles. We

have, nevertheless, decided not to neglect entirely the single-pole model as it is felt that this

simplified model may have sorte utility in later studies - in particular, in the digital computer

simulation of optimum detector structures. It has been determined that the resulting APD plots

for the artificially generated ELF noise do not exhibit noticeable differences for the different

linear system used to generate the shot process, provided that the other parameters remain

fixed. Figures ;0(a) and 20(b) illustrate the correepondence between the APD's of artificially

generated and recorded high-level Saipan data when the parameters of the proposed model are

choGvn from Table III. As can be obse-ved, the correspondence is extremely good. Similar

corresponderces have been obtained with the Malta and Norway data.

As a final comment, it should be noted that some estimate of the processing gains to be

realized with typical nonlinear receiver structures operating upon noise as described by this

17
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model can be obtained from the data of Table Il. In particular, consider a detector of the hole-
punching variety with threshold set just above the background Gaussian noise level.* The fraction

of signal energy lost in any 1-second interval is approximately ATc which, from the data of
Table III, is negligible in each case. The reduction of noise power, on the other hand, is approx-

imately given by AdB as defined in (46). Thus, the processing gain is approximately AdB which,
in each of the cases considered, has been included in Table III. This estimate comes surpris-

ingly close to the processing gain measured with corresponding recorded noise data.

VI. SUMMARY AND CONCLUSIONS

A model for ELF noise has been proposed and studied in detail. A procedure has been given

for fitting the free parameters of this model to observed noise data. It is felt that the model

satisfies all the diserata listed in Section L Further studies will be concerned with the determi-

nation of optimum/suboptimum detector structures for reception in noise as described by this

model and the evaluation of the resulting performance.

There are several directions in which the proposed model could be generalized to more

closely represent observed ELF noise. For instance, the Poisson point process could be re-

placed by one which would result in some correlation between noise burst intervals as has been

obse. ,red in recorded data. Another possibility is to consider linear systems with multiple-

order poles for generating the low-density shot processes. This would result in pulse waveforms

possessing observable precursors which again have been observed in recorded data. Such re-
finements were not undertaken in the present study.

REFERENCES

1. J. E. Evans, "Preliminary Analysis of ELF Noise," Technical Note 1969-18,
Lincoln Laboratory, M. I. T. (26 March 1969), DDC AD-691814.

2. A. Papoulis, Probability, Random Variables and Stochastic Processes
(McGraw-Hill, New York, 1965), Chap. 16.

3. E.N. Gilbert and H.O. Pollak, "Amplitude Distribution of Shot Noise," Bell System
Tech. J. 39, 333-350 (1960).

4. D. L. Snyder, "Optimal Detection of Known Sipals in a Non-Gaussian Noise
Resembling VLF Atmospheric Noise," 1968 Wescon Convention Record, Part 4.

5. E. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962), Chap. 4.

6. L. Zadeh and C. Desoer, Linear Sstem 0(McGraw-Hill, New York, 1963).

7. D. L. Snyder, The State-Variable Approach to ContMiHuous 5ntimaQp, Research
Monograph No.51 (M.I.T. Press, Cambridge, 1969).

8. P. Lancaster, hory of Matrices (Acadomic, New York, 1969), Chap. 5.
9. J.W. Modesatno, "Comments on Models for ELF Atmoepieric Noise," unpublisbed

Lincoln Laboratory memorandum, April 1971.

10. B. Gold and C. M. Rader, •grtal Processing of S~ii (McGraw-Hill, Nsw York,
1969), Chap. 3.

'In particular, at the level T defined In Section II.

23

S. ... ' . ,, - , . . , • . • I %


